Peripheral infusion of insulin-like growth factor-I increases the number of newborn oligodendrocytes in the cerebral cortex of adult hypophysectomized rats.
نویسندگان
چکیده
We have previously shown that recombinant human (rh) IGF-I induces cell proliferation and neurogenesis in the hippocampus of hypophysectomized rats. In the current investigation, we determined the effects of rhIGF-I on proliferation and differentiation in the cerebral cortex. Adult hypophysectomized rats were injected with bromodeoxyuridine (BrdU) to label newborn cells (once a day for the first 5 d), and rhIGF-I was administered peripherally for 6 or 20 d. In the cerebral cortex, the number of BrdU-labeled cells increased after 20 d but not after 6 d of rhIGF-I infusion. This suggests that rhIGF-I enhances the survival of newborn cells in the cerebral cortex. Using BrdU labeling combined with the oligodendrocyte-specific markers myelin basic protein and 2',3'-cyclic nucleotide 3'-phosphodiesterase, we demonstrated an increase in oligodendrogenesis in the cerebral cortex. The total amount of myelin basic protein and 2',3'-cyclic nucleotide 3'-phosphodiesterase was also increased on Western blots of homogenates of the cerebral cortex, confirming the immunohistochemical findings. Also, we observed an increase in the number of capillary-associated BrdU-positive cells, although total capillary area was not increased. rhIGF-I treatment did not affect cortical astrogliogenesis and neurogenesis was not observed. The ability of rhIGF-I to induce cortical oligodendrogenesis may have implications for the regenerative potential of the cortex.
منابع مشابه
Effects of Nerve Growth Factor, Insulin- Like Growth Factor-I and Collagen Gel on Peripheral Nerve Channel: Sensory, Functional and Regeneration Through Piezoelectric Electrophysiologicalal Study
Purpose: The limited availability of donor sites for nerve grafts continues to stimulate research toward finding suitable alternatives. Material and Methods: In the following study, the effects of direct administration of Nerve Growth Factor (NGF), Insulin - Like Growth Factor - I (IGF-I) , or / and collagen gel into Polyvinylidene Fluride (PVDF) gap was tested in a rat sciatic nerve model. A ...
متن کاملAdministration of Leukemia Inhibitory Factor Increases Opalin Expression in the Cerebral Cortex of Male Balb/C Mice An In Vivo Study
Background: Leukemia inhibitory factor (LIF) is a neurortophic cytokine which plays an important role in the neural cell survival. Expression of LIF and its receptor, LIFR, in different brain regions has been demonstrated. Based on evidences LIF plays an important role in the modulation of neurogenesis and glial responses to injury. Up-regulation of LIF after central nervous system (CNS) damage...
متن کاملInvestigation on the Levels of IGF-I Receptor and IGF-I Binding Protein I in the Brain of Insulin Resistant Rats
Abstract Introduction: There is limited knowledge available on the metabolism of glucose in the brain, an insulin insensitive organ. Insulin receptors hybridize with insulin like growth factor receptor (IGF-I) to transduce the signals in different areas of the brain. In this article we aimed at investigating whether the expression of IGF-I receptor and IGF-I binding proteins (IGFBP1) is change...
متن کاملANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO
The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...
متن کاملIntracerebroventricular infusion of insulin-like growth factor-I ameliorates the age-related decline in hippocampal neurogenesis.
The dentate gyrus of the hippocampus is one of few regions in the adult mammalian brain characterized by ongoing neurogenesis. Significantly, recent studies indicate that the rate of neurogenesis in the hippocampus declines with age, perhaps contributing to age-related cognitive changes. Although a variety of factors may influence the addition of new neurons in the adult dentate gyrus, the mech...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Endocrinology
دوره 148 8 شماره
صفحات -
تاریخ انتشار 2007